The phenotype and genotype of fermentative prokaryotes
Hackmann TJ, Zhang B.
Sci Adv. 2023 Sep 29;9(39):eadg8687. doi: 10.1126/sciadv.adg8687
PMID: 37756392

The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella
Zhang B, Lingga C, De Groot H, Hackmann TJ.
Sci Rep. 2023 Sep 30;13(1):16429.doi: 10.1038/s41598-023-43282-9.
PMID: 37777597

New biochemical pathways for forming short-chain fatty acids during fermentation in rumen bacteria
Hackmann TJ.
JDS Comm. In press.

Perspective: How to address the root cause of milk fat depression in dairy cattle
Hackmann TJ, Vahmani P.
J Dairy Sci. 2023 Aug 23:S0022-0302(23)00537-4.doi: 10.3168/jds.2023-23501
PMID: 37641302

Redefining the coenzyme A transferase superfamily with a large set of manually-annotated proteins
Hackmann TJ.
Protein Sci. 2022 Jan 20. doi: 10.1002/pro.4277
PMID: 35049101

A new pathway for forming acetate and synthesizing ATP during fermentation in bacteria
Zhang B, Lingga C, Bowman C, Hackmann TJ.
Appl Environ Microbiol. 2021 Apr 30:AEM.02959-20. doi: 10.1128/AEM.02959-20.
PMID: 33931420

Using neural networks to mine text and predict metabolic traits for thousands of microbes.
Hackmann TJ, Zhang B
PLoS Comput Biol. 2021 Mar 2;17(3):e1008757. doi: 10.1371/journal.pcbi.1008757.
PMID: 33651810

Energy conservation involving 2 respiratory circuits.
Schoelmerich MC, Katsyv A, Dönig J, Hackmann TJ, Müller V.
Proc Natl Acad Sci U S A. 2020. 117:1167-1173. doi: 10.1073/pnas.1914939117
PMID: 31879356

Postprandial blood glucose and insulin responses of horses to feeds differing in soluble fiber concentration.
Hansen TL, Rankins EM, Bobel JM, McKinney M, Hackmann TJ, Warren LK.
J Equine Vet Sci. 2020. 88. 102963
PMID: 32303311

Lipopolysaccharide stimulates the growth of bacteria that contribute to ruminal acidosis.
Dai X, Hackmann TJ, Lobo RR, Faciola AP.
Appl Environ Microbiol. 2020. 86. pii: e02193-19. doi: 10.1128/AEM.02193-19
PMID: 31811042

Accurate estimation of microbial sequence diversity with Distanced.
Hackmann TJ.
Bioinformatics. 2020. 36:728–734. doi: 10.1093/bioinformatics/btz668
PMID: 31504180

Exogenous fibrolytic enzymes and recombinant bacterial expansins synergistically improve hydrolysis and in vitro digestibility of bermudagrass haylage.
Pech-Cervantes AA, Muhammad I, Ogunade IM, Jiang Y, Kim DH, Gonzalez CF, Hackmann TJ, Oliveira AS, Vyas D, Adesogan AT.
J Dairy Sci. 2019 102:8059-8073. doi: 10.3168/jds.2019-16339.
PMID: 31326164

Use of a fluorescent analog of glucose (2-NBDG) to identify which uncultured rumen bacteria take up glucose.
Tao J, McCourt C, Sultana H, Nelson C, Driver J, Hackmann TJ.
Appl Environ Microbiol. 2019. 22:pii: e03018-18. doi: 10.1128/AEM.03018-18
PMID: 30709823

Rumen digestion kinetics, microbial yield, and omasal flows of non-microbial and microbial amino acids in lactating dairy cattle fed fermentation byproduct or urea as a soluble nitrogen source.
Fessenden SW, Hackmann TJ, Ross DA, Block E, Foskolos A, Van Amburgh ME.
J Dairy Sci. 2019. 102:3036-3052. doi: 10.3168/jds.2018-15448
PMID: 30660423

Effects of commercial fermentation byproduct or urea on milk production, rumen metabolism, and omasal flow of nutrients in lactating dairy cattle.
Fessenden SW, Foskolos A, Hackmann TJ, Ross DA, Block E, Van Amburgh ME.
J Dairy Sci. 2019. 102:3023-3035. doi: 10.3168/jds.2018-15447
PMID: 30799114

Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids.
Hackmann TJ, Ngugi DK, Firkins JL, Tao J.
Environ Microbiol. 2017. 19:4670-4683. doi: 10.1111/1462-2920.
PMID: 28892251

Genomic diversification of giant enteric symbionts reflects host dietary lifestyles.
Ngugi DK, Miyake S, Cahill M, Vinu M, Hackmann TJ, Blom J, Tietbohl MD, Berumen ML, Stingl U.
Proc Natl Acad Sci U S A. 2017. 114:E7592-E7601. doi: 10.1073/pnas.1703070114
PMID: 28835538

Ruminal bacteria and protozoa composition, digestibility and amino acid profile determined by multiple hydrolysis times.
Fessenden SW, Hackmann TJ, Ross D, Foskolos A, Van Amburgh MA.
J Dairy Sci. 2017. 100:7211-7226. doi: 10.3168/jds.2016-12531
PMID: 28668529

Association of aqueous hydrogen concentration with methane production in continuous cultures modulated to vary pH and solids passage rate.
Wenner BA, De Souza J, Batistel F, Hackmann TJ, Firkins JL.
J Dairy Sci. 2017. 100:5378-89. doi: 10.3168/jds.2016-12332
PMID: 28456412

Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.
Teixeira C, Lana R, Tao J, Hackmann TJ.
FEMS Microbiol Ecol. 2017. 93:fix064. doi: 10.1093/femsec/fix060
PMID: 28486619

Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR.
Jiang Y, Ogunade IM, Qi S, Hackmann TJ, Staples CR, Adesogan AT.
J Dairy Sci. 2017. 100:325-342. doi: 10.3168/jds.2016-11263.
PMID: 27837973

Transport of a fluorescent analogue of glucose (2-NBDG) versus radiolabeled sugars by rumen bacteria and Escherichia coli.
Tao J, Diaz RK, Teixeira CR, Hackmann TJ.
Biochemistry. 2016. 55:2578-89. doi: 10.1021/acs.biochem.5b01286.
PMID: 27096355

α-Galactosylceramide protects swine against influenza infection when administered as a vaccine adjuvant.
Artiaga BL, Yang G, Hackmann TJ, Liu Q, Richt JA, Salek-Ardakani S, Castleman WL, Lednicky JA, Driver JP.
Sci Rep. 2016. 6:23593. doi: 10.1038/srep23593.
PMID: 27004737

Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate.
Hackmann TJ, Firkins JL.
Front Microbiol. 2015. 6:622. doi: 10.3389/fmicb.2015.00622.
PMID: 26157432

Maximizing efficiency of rumen microbial protein production.
Hackmann TJ, Firkins JL.
Front Microbiol. 2015. 6:465. doi: 10.3389/fmicb.2015.00465.
PMID: 26029197

Targeted disruption of CD1d prevents NKT cell development in pigs.
Yang G, Artiaga BL, Hackmann TJ, Samuel MS, Walters EM, Salek-Ardakani S, Driver JP.
Mamm Genome. 2015. 26:264-70. doi: 10.1007/s00335-015-9564-0.
PMID: 25930071

Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.
Denton BL, Diese LE, Firkins JL, Hackmann TJ.
Appl Environ Microbiol. 2015. 81:1832-8. doi: 10.1128/AEM.03736-14.
PMID: 25548053

Quantifying the responses of mixed rumen microbes to excess carbohydrate.
Hackmann TJ, Diese LE, Firkins JL.
Appl Environ Microbiol. 2013. 79:3786-95. doi: 10.1128/AEM.00482-13.
PMID: 23584777

Evaluation of methods to detect changes in reserve carbohydrate for mixed rumen microbes.
Hackmann TJ, Keyser BL, Firkins JL.
J Microbiol Methods. 2013. 93:284-91. doi: 10.1016/j.mimet.2013.03.025.
PMID: 23570905

A system for predicting energy and protein requirements of wild ruminants.
Hackmann TJ.
Zoo Biol. 2011. 30:165-88. doi: 10.1002/zoo.20332.
PMID: 20549760

Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production.
Hackmann TJ, Spain JN.
J Dairy Sci. 2010. 93:1320-34. doi: 10.3168/jds.2009-2071. Review.
PMID: 20338409

Using Yb-labeled forage to investigate particle flow kinetics across sites in the bovine reticulo-rumen.
Hackmann TJ, Sampson JD, Spain JN
Anim Feed Sci Tech. 2010. 157:1-12. doi: 10.1016/j.anifeedsci.2009.12.002

Variability in in situ ruminal degradation parameters causes imprecision in estimated ruminal digestibility.
Hackmann TJ, Sampson JD, Spain JN.
J Dairy Sci. 2010. 93:1074-85. doi: 10.3168/jds.2008-1958.
PMID: 20172229

A mechanistic model for predicting intake of forage diets by ruminants.
Hackmann TJ, Spain JN.
J Anim Sci. 2010. 88:1108-24. doi: 10.2527/jas.2008-1378.
PMID: 19854989

Effects of Tasco in alleviation of heat stress in beef cattle.
Williams JE, Spiers DE, Thompson LN, Hackmann TJ, Ellersieck MR, Wax L, Colling DP, Corners JB, Lancaster PA.
Prof Anim Sci. 2009. 25:109-17. doi: 10.15232/S1080-7446(15)30693-8

Comparing relative feed value with degradation parameters of grass and legume forages.
Hackmann TJ, Sampson JD, Spain JN.
J Anim Sci. 2008. 86:2344-56. doi: 10.2527/jas.2007-0545.
PMID: 18441075